Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276759

RESUMEN

Pterocarpus anglonesis DC is an indigenous medicinal plant belonging to the Pterocarpus genus of the Fabaceae family. It is used to treat stomach problems, headaches, mouth ulcers, malaria, blackwater fever, gonorrhea, ringworm, diarrhea, heavy menstruation, and breast milk stimulation. Column chromatography of the stem bark extracts resulted in the isolation of eight compounds, which included friedelan-3-one (1), 3α-hydroxyfriedel-2-one (2), 3-hydroxyfriedel-3-en-2-one (3), lup-20(29)-en-3-ol (4), Stigmasta-5-22-dien-3-ol (5), 4-O-methylangolensis (6), (3ß)-3-acetoxyolean-12-en-28-oic acid (7), and tetradecyl (E)-ferulate (8). The structures were established based on NMR, IR, and MS spectroscopic analyses. Triple-negative breast cancer (HCC70), hormone receptor-positive breast cancer (MCF-7), and non-cancerous mammary epithelial cell lines (MCF-12A) were used to test the compounds' cytotoxicity. Overall, the compounds showed either no toxicity or very low toxicity to all three cell lines tested, except for the moderate toxicity displayed by lupeol (4) towards the non-cancerous MCF-12A cells, with an IC50 value of 36.60 µM. Compound (3ß)-3-acetoxyolean-12-en-28-oic acid (7) was more toxic towards hormone-responsive (MCF-7) breast cancer cells than either triple-negative breast cancer (HCC70) or non-cancerous breast epithelial (MCF-12A) cells (IC50 values of 83.06 vs. 146.80 and 143.00 µM, respectively).

2.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136652

RESUMEN

Cordyline species have a long history in traditional medicine as a basis of treatment for various ailments such as a bloody cough, dysentery, and a high fever. There are about 26 accepted species names in this genus distributed worldwide, including C. fruticosa, C. autralis, C. stricta, C. cannifolia, and C. dracaenosides. This work presents a comprehensive review of the traditional uses of plants of the genus Cordylie and their chemical constituents and biological activities. A bibliographic search was conducted to identify available information on ethnobotany, ethnopharmacology, chemical composition, and biological activities. A total of 98 isolated compounds potentially responsible for most of the traditional medicinal applications have been reported from eight species of Cordyline and are characterised as flavonoid, spirostane, furostane, and cholestane glycosides. Some of these pure compounds, as well as extracts from some species of Cordyline, have exhibited noteworthy anti-oxidant, antiproliferative, antimicrobial, and hypolipidemic activities. Although many of these species have not yet been investigated phytochemically or pharmacologically, they remain a potential source of new bioactive compounds.


Asunto(s)
Cordyline , Etnobotánica , Fitoterapia , Fitoquímicos/química , Etnofarmacología , Extractos Vegetales/química
3.
Nat Prod Bioprospect ; 13(1): 52, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996570

RESUMEN

Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.

4.
Heliyon ; 9(11): e21841, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027816

RESUMEN

Ethnopharmacological relevance: Canarium schweinfurthii, also called ''Elemierd'Afrique'', is used in Cameroonian folk medicine (bark decoction) to treat patients suffering from hypertension.Aim of the study: This study aimed at evaluating the antihypertensive activities of the stem bark of Canarium schweinfurthii and identifying potential compounds present in its extract that may support or oppose its ethnomedicinial use. Materials and methods: Stem bark extract of Canarium schweinfurthii was prepared by maceration using 70 % ethanol followed by redissolution in methanol and hyphenated. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis for the detection and characterisation of secondary metabolites. Antihypertensive effects were assessed in Wistar rats after induction of hypertension with sodium chloride (NaCl) 18 % at a dose of 0.01mL/gbody weight once a day for four weeks.Hemodynamic parameters were measured weekly by anon-invasive method using the CODA system. Results: The ethanolic bark extract of C. schweinfurthii significantly inhibited the increase of blood pressure with a maximum of 23.18 % (systolic pressure, p < 0.0001), 24.77 % (diastolic pressure, p < 0.001) and 22.95 % (mean pressure, p < 0.0001) at a dose of 200 mg/kgbody weight at the 4th week, compared to agroup of Wistar rats that received only NaCl (negative control). Similarly, the extract significantly inhibited the increase in heart rate by 18.84 % (p < 0.001) at 200 mg/kgbody weight at week four. Hematological parameters did not differ significantly between the extract-treated and control groups. The UPLC-MS/MS spectrometric analysis provided evidence for the presence of several C30 terpenoids containing three or five oxygen atoms and exhibiting pentacyclic triterpenoid structures, as well as C29 terpenoids and related compounds containing nitrogen in addition to oxygen, using spectral matching, and in silico molecular formula and structure prediction. Additionally, two features were annotated with high-confidence as lignans, structurally closely related to hinokinin and dehydrocubebin through MS/MS-based in silico structure prediction using CSI: Finger ID in SIRIUS5. The lignans have been previously reported from stem bark of plants belonging to the Burseraceae family. Conclusion: The ethanolic stem bark extract of C. schweinfurthii demonstrated antihypertensive properties on the tested Wistar rats. These results support the ethnopharmacological use of C. schweinfurthii concoctions for the treatment of hypertension and suggest a protective effect against salt damage, hypothetically by the up regulation of antioxidative enzymes and/or lipids, mitigatings membrane peroxidation.

5.
Molecules ; 28(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894704

RESUMEN

Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.


Asunto(s)
Antimaláricos , Antiprotozoarios , Limoninas , Malaria Falciparum , Meliaceae , Humanos , Antimaláricos/química , Limoninas/farmacología , Limoninas/análisis , Extractos Vegetales/química , Sulfadoxina/análisis , Corteza de la Planta/química , Antiprotozoarios/farmacología , Antiprotozoarios/análisis , Cloroquina , Meliaceae/química , Plasmodium falciparum
6.
Plants (Basel) ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836110

RESUMEN

Secondary metabolites were isolated using chromatographic techniques after being extracted sequentially from the roots of Artemisia afra using organic solvents such as ethanol, ethyl acetate, dichloromethane, and n-hexane. The isolated compounds were evaluated for anti-fungal, anti-bacterial, and cytotoxicity activities. Spectroscopic techniques, including Nuclear Magnetic Resonance (NMR), Fourier transform infrared (FTIR), and liquid chromatography-mass spectrometry (LC-MS), were used to elucidate the structures of the isolated compounds. The phytochemical investigation of A. afra led to the isolation of eight (A-H) compounds which were identified as 3ß-taraxerol (A), 3ß-taraxerol acetate (B), dodecyl-p-coumarate (C), ferulic acid (D), scopoletin (E), sitosterol-3-O-ß-D-glucopyranoside (F), 3,5-di-O-feruloylquinic acid (G) and Isofraxidin-7-O-ß-D-glucopyranoside (H) based on spectroscopic data. Compounds A, B, C, F, G, and H are known but were isolated for the first time from the roots of A. afra. The isolated compounds and extracts from A. afra exhibited good anti-fungal and anti-bacterial activity with dichloromethane and ethyl acetate crude extracts (0.078 mg/mL) and compound E (62.5 µg/mL) showed good activities against Escherichia coli. Compounds C and F also showed good activity against Enterococcus faecalis with minimum inhibitory concentration (MIC) values of 62.5 and 31.25 µg/mL, respectively. Extracts and compounds (A-H) exhibited anti-fungal and anti-bacterial properties and showed no toxicity when tested on Vero monkey kidney (Vero) cells.

7.
BMC Complement Med Ther ; 23(1): 316, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697361

RESUMEN

BACKGROUND: Stigmasterol is an unsaturated phytosterol that belong to the class of tetracyclic steroids abundant in Rhoicissus tridentata. Stigmasterol is an important constituent since it has shown impressive pharmacological effects such as anti-osteoarthritis, anticancer, anti-diabetic, anti-inflammatory, antiparasitic, immunomodulatory, antifungal, antioxidant, antibacterial, and neuroprotective activities. Furthermore, due to the presence of π system and hydroxyl group, stigmasterol is readily derivatized through substitution and addition reactions, allowing for the synthesis of a wide variety of stigmasterol derivatives. METHODS: Stigmasterol (1) isolated from Rhoicissus tridentata was used as starting material to yield eight bio-active derivatives (2-9) through acetylation, epoxidation, epoxide ring opening, oxidation, and dihydroxylation reactions. The structures of all the compounds were established using spectroscopic techniques, NMR, IR, MS, and melting points. The synthesized stigmasterol derivatives were screened for cytotoxicity against the hormone receptor-positive breast cancer (MCF-7), triple-negative breast cancer (HCC70), and non-tumorigenic mammary epithelial (MCF-12 A) cell lines using the resazurin assay. RESULTS: Eight stigmasterol derivatives were successfully synthesized namely; Stigmasterol acetate (2), Stigmasta-5,22-dien-3,7-dione (3), 5,6-Epoxystigmast-22-en-3ß-ol (4), 5,6-Epoxystigmasta-3ß,22,23-triol (5), Stigmastane-3ß,5,6,22,23-pentol (6), Stigmasta-5-en-3,7-dion-22,23-diol (7), Stigmasta-3,7-dion-5,6,22,23-ol (8) and Stigmast-5-ene-3ß,22,23-triol (9). This is the first report of Stigmasta-5-en-3,7-dion-22,23-diol (7) and Stigmasta-3,7-dion-5,6,22,23-ol (8). The synthesized stigmasterol analogues showed improved cytotoxic activity overall compared to the stigmasterol (1), which was not toxic to the three cell lines tested (EC50 ˃ 250 µM). In particular, 5,6-Epoxystigmast-22-en-3ß-ol (4) and stigmast-5-ene-3ß,22,23-triol (9) displayed improved cytotoxicity and selectivity against MCF-7 breast cancer cells (EC50 values of 21.92 and 22.94 µM, respectively), while stigmastane-3ß,5,6,22,23-pentol (6) showed improved cytotoxic activity against the HCC70 cell line (EC50: 16.82 µM). CONCLUSION: Natural products from Rhoicissus tridentata and their derivatives exhibit a wide range of pharmacological activities, including anticancer activity. The results obtained from this study indicate that molecular modification of stigmasterol functional groups can generate structural analogues with improved anticancer activity. Stigmasterol derivatives have potential as candidates for novel anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Estigmasterol/farmacología , Glicoles de Propileno , Antineoplásicos/farmacología , Antibacterianos
8.
Nat Prod Res ; : 1-6, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480346

RESUMEN

The commercial activity of the grey mullet (known as Tainha: TAI) and Tambaqui (TAM) generates tons of waste that can be turned into valuable resources. Therefore, this work aimed to chemically characterize and quantify the fatty acids profiles of the two fishes. GCMS quantification was performed by using calibration curves built from a standard that contains 19 FAME. The analysis revealed that visceral wastes from both fishes contain 16 fatty acids (FA) consisting of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA). However, their compositions were different as FA side chains in TAI and TAM contain 12 to 20 and 13 to 22 carbon atoms, respectively. Also, the SFA amount in TAI was greater than in TAM. On the other hand, TAM is richer in MUFA and PUFA compared to TAI. Both have similar chemical compositions of ω-3 and ω-6 in PUFA and ω-5, ω-7, and ω-9 in MUFA.

9.
Cells ; 12(12)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37371141

RESUMEN

The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.


Asunto(s)
Productos Biológicos , Dermatitis , Psoriasis , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Psoriasis/tratamiento farmacológico , Sirolimus , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
10.
Magn Reson Chem ; 61(8): 497-503, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37340817

RESUMEN

From the n-butanol soluble fraction of the ethanol extract of the medicinal plant Olax subscorpioidea, a previously unreported rotameric biflavonoid glycoside constituted of 4'-O-methylgallocatechin-(4α → 8)-4'-O-methylgallocatechin as aglycone named olasubscorpioside C (1) along with the known 4'-O-methylgallocatechin (2) were isolated. Their structures were determined on the basis of spectrometric and spectroscopic techniques including HRFABMS, 1 H and 13 C NMR, DEPT 135o , HSQC, HMBC, ROESY, and CD followed by comparison with the reported data.


Asunto(s)
Biflavonoides , Glicósidos , Glicósidos/química , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética , Etanol , Estructura Molecular
11.
Environ Pollut ; 330: 121829, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196837

RESUMEN

Microplastics (MPs) are becoming ubiquitous, and their environmental fate is becoming an issue of concern. Our review aims to synthesize current knowledge status and provide future perspectives regarding the vector effect of MPs for chemical contaminants and biological agents. The evidence in the literature indicates that MPs are a vector for persistent organic pollutants (POPs), metals and pharmaceuticals. Concentrations of chemical contaminant in orders of six-fold higher on MPs surfaces than in the surrounding environmental waters have been reported. Chemical pollutants such as perfluoroalkyl substances (PAFSs), hexachlorocyclohexane (HCHs) and polycyclic aromatic hydrocarbons (PAHs), exhibiting polarities in the range of 3.3-9 are the commonest chemicals reported on MP surfaces. Regarding metals on MPs including chromium (Cr), lead (Pb), cobalt (Co), the presence of C-O and N-H in MPs promote a relatively high adsorption of these metals onto MP surfaces. Regarding pharmaceuticals, not much has been done, but a few studies indicate that commonly used drugs such as ibuprofen, ibuprofen, diclofenac, and naproxen have been associated with MPs. There is sufficient evidence supporting the claim that MPs can act as vectors for viruses, bacterial and antibiotic-resistant bacteria and genes, and MPs act to accelerate horizontal and vertical gene transfer. An area that deserves urgent attention is whether MPs can act as vectors for invertebrates and vertebrates, mainly non-native, invasive freshwater species. Despite the ecological significance of invasive biology, little research has been done in this regard. Overall, our review summarises the state of the current knowledge, identifies critical research gaps and provides perspectives for future research.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos/química , Ecosistema , Factores Biológicos , Ibuprofeno , Contaminantes Químicos del Agua/análisis , Metales , Agua Dulce , Preparaciones Farmacéuticas
12.
Pharmaceuticals (Basel) ; 16(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242558

RESUMEN

Dacryodes Vahl. species, belonging to the Burseraceae family, are widely used in traditional medicine in tropical regions to treat a range of ailments including malaria, wounds, tonsillitis, and ringworms. This review discusses the distribution, ethnobotanical uses, phytochemistry, and bioactivities of Dacryodes species. The intent is to spur future research into isolating and identifying key active principles, secondary metabolites, and crude extracts, and evaluating their pharmacological and toxicological effects, as well as the mechanism of actions to understand their medicinal benefits. A systematic review of scientific electronic databases from 1963 to 2022 including Scifinder, Scopus, Pubmed, Springer Link, ResearchGate, Ethnobotany Research and Applications, Google Scholar, and ScienceDirect was conducted with a focus on Dacryodes edulis (G.Don) H.J. Lam and Dacryodes rostrata (Blume) H.J. Lam. Pharmacological data revealed that D. edulis isolates contain secondary metabolites and other phytochemical groups belonging to the terpenoids class with anti-microbial, anticancer, antidiabetic, antiinflammatory and hepatoprotective activities, highlighting its pharmacological potential in the therapy or management of diverse cancers, cardiovascular, and neurological diseases. Thus, phytochemicals and standardized extracts from D. edulis could offer safer and cost-effective chemopreventive and chemotherapeutic health benefits/regimen, or as alternative therapeutic remedy for several human diseases. Nevertheless, the therapeutic potential of most of the plants in the genus have not been exhaustively explored with regard to phytochemistry and pharmacology, but mostly complementary approaches lacking rigorous, scientific research-based knowledge. Therefore, the therapeutic potentials of the Dacryodes genus remain largely untapped, and comprehensive research is necessary to fully harness their medicinal properties.

13.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985700

RESUMEN

Antrocaryon klaineanum is traditionally used for the treatment of back pain, malaria, female sterility, chlamydiae infections, liver diseases, wounds, and hemorrhoid. This work aimed at investigating the bioactive compounds with antileishmanial and antiplasmodial activities from A. klaineanum. An unreported glucocerebroside antroklaicerebroside (1) together with five known compounds (2-6) were isolated from the root barks of Antrocaryon klaineanum using chromatographic techniques. The NMR, MS, and IR spectroscopic data in association with previous literature were used for the characterization of all the isolated compounds. Compounds 1-4 are reported for the first time from A. klaineanum. The methanol crude extract (AK-MeOH), the n-hexane fraction (AK-Hex), the dichloromethane fraction (AK-DCM), the ethyl acetate fraction (AK-EtOAc), and compounds 1-6 were all evaluated for their antiparasitic effects against Plasmodium falciparum strains susceptible to chloroquine (3D7), resistant to chloroquine (Dd2), and promastigotes of Leishmania donovani (MHOM/SD/62/1S). The AK-Hex, AK-EtOAc, AK-MeOH, and compound 2 were strongly active against Dd2 strain with IC50 ranging from 2.78 ± 0.06 to 9.30 ± 0.29 µg/mL. Particularly, AK-MeOH was the most active-more than the reference drugs used-with an IC50 of 2.78 ± 0.06 µg/mL. The AK-EtOAc as well as all the tested compounds showed strong antileishmanial activities with IC50 ranging from 4.80 ± 0.13 to 9.14 ± 0.96 µg/mL.


Asunto(s)
Anacardiaceae , Antimaláricos , Antiprotozoarios , Antimaláricos/farmacología , Antimaláricos/química , Anacardiaceae/química , Extractos Vegetales/química , Antiprotozoarios/farmacología , Cloroquina , Plasmodium falciparum
14.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36765728

RESUMEN

The rise of cancer cases has coincided with the urgent need for the development of potent chemical entities and/or modification of existing commodities to improve their efficacy. Increasing evidence suggests that cancer remains one of the leading causes of death globally, with colon cancer cases alone likely to rise exponentially by 2030. The exponential rise in cancer prevalence is largely attributable to the growing change toward a sedentary lifestyle and modern diets, which include genetically modified foods. At present, the prominent treatments for cancer are chemotherapy, surgery, and radiation. Despite slowing cancer progression, these treatments are known to have devastating side effects that may deteriorate the health of the patient, thus, have a low risk-benefit ratio. In addition, many cancer drugs have low bioavailability, thereby limiting their therapeutic effects in cancer patients. Moreover, the drastic rise in the resistance of neoplastic cells to chemotherapeutic agents is rendering the use of some drugs ineffective, thereby signaling the need for more anticancer chemical entities. As a result, the use of natural derivatives as anticancer agents is gaining considerable attention. Iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs, which synergistically have the potential to increase their effects. Published studies have identified the role of iridoids, which, if fully explored, may result in cheaper and less toxic alternative/adjuvant cancer drugs. The subject of this article is natural and synthetic iridoid derivatives and their potential therapeutic roles as anticancer agents.

15.
J Ethnopharmacol ; 301: 115170, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35358625

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Monsonia angustifolia is traditionally used to treat anthrax, heartburn, diarrhea, eye infections and hemorrhoids. Dodonaea angustifolia is frequently used as a treatment for dental pain, microbial infections and jungle fever. The two plant species were selected due to the presence of secondary metabolites such as coumarins, flavonoids, terpenoids, saponins and polyphenolics from the crude extracts, which exhibit pharmacological significance. The pure isolated compounds from the crude extracts are known for their diverse structures and interesting pharmacophores. AIM: To isolate and identify antibacterial and antifungal chemical constituents from Monsonia angustifolia and Dodonaea angustifolia plant extracts and evaluate the cytotoxicity of pure compounds from the crude extracts. MATERIALS AND METHODS: Extractives from M. angustifolia and D. angustifolia plants were isolated using chromatographic techniques and structures were elucidated based on NMR, IR and MS spectroscopic techniques. A microplate serial dilution method was used to evaluate the antibacterial activity of extracts and pure compounds against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and antifungal activity against Candida albicans and Cryptococcus neoformans. The cytotoxicity was determined using the 3-(4, 5-dimethylthiazol)-2, 5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The dichloromethane, ethyl acetate and methanol crude extracts from the plants exhibited significant inhibition of microbial growth. The phytochemical investigation of these active crude extracts led to the isolation of five pure active compounds, 5-methoxyjusticidin A (1), cis-phytyl diterpenoidal fatty acid ester (2), stigmasterol (3), ß-sitosterol (4) and 5-hydroxy-7,4'-dimethoxyflavone (5). Stigmasterol (3) showed good antifungal activity against Cryptococcus neoformans with a minimum inhibition concentration (MIC) of 25 µg/mL and Candida albicans (MIC = 50 µg/mL). CONCLUSION: Compounds (1-5) isolated from Monsonia angustifolia and Dodonaea angustifolia showed antibacterial and antifungal activities and were non-toxic against Madin-Darby canine kidney (MDCK) cells and VERO monkey kidney (VERO) cells.


Asunto(s)
Geraniaceae , Sapindaceae , Antifúngicos/toxicidad , Antifúngicos/química , Estigmasterol , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Antibacterianos/toxicidad , Antibacterianos/química
16.
Nat Prod Res ; 37(10): 1641-1650, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35921518

RESUMEN

A previously unreported gallocatechin glycoside, (2 R,3S) 4'-O-methyl-gallocatechin-3-O-α-ʟ-rhamnopyranoside (1) and an unseparable mixture of two previously undescribed dihydromyricetin glycosides, (2 R,3R) 4'-O-methyl-dihydromyricetin-3-O-α-ʟ-rhamnopyranoside (2a) and (2 R,3S) 4'-O-methyl-dihydromyricetin-3-O-α-ʟ-rhamnopyranoside (2 b) along with three known compounds were isolated from the n-butanol soluble fraction of the stem bark of Olax subscorpioidea Oliv. Their structures were elucidated by detailed spectroscopic analyses, including 1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC, NOESY, HR-ESI-MS and chemical methods. The crude ethanol extract, the fractions, and some of the isolated compounds were screened for their antioxidant and antibacterial activities. They showed significant antioxidant activities with EC50 ranging from 6.29 to 18.19 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and EC50 ranging from 85.77 to 86.39 mmol FeSO4/g in ferric reducing antioxidant power (FRAP) methods compared with 2.29 µg/mL and 3.52 mmol FeSO4/g for the positive control (ʟ-ascorbic acid). Nevertheless, no inhibition was observed against the tested bacterial strains at a MIC less than 256 µg/mL.


Asunto(s)
Antioxidantes , Flavonoides , Flavonoides/química , Antioxidantes/química , Corteza de la Planta/química , Extractos Vegetales/química , Glicósidos/química
17.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557854

RESUMEN

Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.


Asunto(s)
Alcaloides , Antineoplásicos , Productos Biológicos , Poríferos , Pirroliminoquinonas , Animales , Pirroliminoquinonas/química , Pirroliminoquinonas/farmacología , Poríferos/química , Antineoplásicos/química , Alcaloides/química , Descubrimiento de Drogas
18.
Pharmaceutics ; 14(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36365255

RESUMEN

In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.

19.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296444

RESUMEN

A simple, green, and highly efficient protocol for the synthesis of isocyanides is described. The reaction involves dehydration of formamides with phosphorus oxychloride in the presence of triethylamine as solvent at 0 °C. The product isocyanides were obtained in high to excellent yields in less than 5 min. The method offers several advantages including increased synthesis speed, relatively mild conditions, and rapid access to large numbers of functionalized isocyanides, excellent purity, increased safety, and minimal reaction waste. The new approach of synthesising dehydrative isocyanides from formamides is significantly more environmentally-friendly than prior methods.


Asunto(s)
Cianuros , Formamidas , Solventes
20.
Gels ; 8(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36135275

RESUMEN

Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...